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Abstract

In this study, the dynamic stability of plate with the active-damping layer under a thrust is
investigated. The structure is actively damped by piezoelectric layers, and adopted a control algorithm
for vibration suppression. Thin piezoelectric layers are assumed to be embedded on the top and the bottom
surfaces of the structure. The top and the bottom layers are taken as the actuator and the sensor,
respectively.
The structure model is based on the first-order shear deformation plate theory, and the finite

element method is applied in the numerical analysis. In addition, the method of multiple scales is
adopted to analyze the parametrically excited system. This analysis is specifically focused on the
mutual interaction of the thrust and the piezoelectric active-damping layer for the vibration suppression.
In this paper, the effects of the active-damping layer with piezoelectric sensors/actuators are discussed
in detail.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Adaptive design, namely active sensing and control of structures, has been a topic that has
drawn great attention among researches and on which significant amount of work has already
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Nomenclature

u,v,w displacements
B strain–displacement matrix
si, ei stress and strain components
{em} inplane strain vector
Ei electric field components
Di electric displacement components
Qij plane-stress reduced elastic constants
eij piezoelectric constants
Xij permittivity coefficients
T,U kinetic energy and potential energy
Wc work of the conservative part of thrust

P

dWnc virtual work of the non-conservative
part of thrust P

M mass matrix

K stiffness matrix by the strain energy
Kg stiffness matrix by the external load
d̄ðxÞ Dirac delta function
Gc gain of the current amplifier
Gi gain to provide feedback control
G control gain
l aspect ratio of plate (length per width)
g thickness ratio of plate
m̄ mass per unit area
D bending rigidity of plate
o natural frequency
O non-dimensional frequency
Q non-dimensional thrust
Odr driving frequency
a static load factor
b pulsating load factor
m damping coefficient
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been done. Furthermore, many researchers have studied the smart structures using various
materials such as shape memory alloys, piezoelectric materials, electrostrictive materials,
magneto-strictive materials and electro-rheological fluids. Among these, piezoelectric materials
have been most widely used due to its advantages such as the fact that it is inexpensive, light
weighted, and can be easily shaped and bonded to surfaces or embedded into structures. The main
features of piezoelectric materials are the direct and converse piezoelectric effects. That is, the
materials generate an electric charge during a mechanical deformation, while mechanical stress or
strain is produced only by an applied electric field. By applying these properties of the material,
smart structures can be tailored to act as distributed sensors/actuators in the active control of
dynamic systems.
Lam et al. [1] and Liu et al. [2] actively controlled the dynamic response of a composite

plate with distributed piezoelectric sensors/actuators by using a simple negative velocity
feedback control algorithm. Saravanan et al. [3] studied active damping in a composite cylindrical
shell with collocated piezoelectric sensors/actuators for the effects of locations, percentage
lengths, and skew angles. Balamurugan and Narayanan [4] developed a new piezo-laminated
quadrilateral composite plate/shell finite element, and analyzed vibration control performance of
the structures. They considered control effectiveness of several control strategies such as direct
proportional feedback, constant-gain negative velocity feedback and Lyapunov feedback. Tzou
et al. [5,6] investigated the spatial sensing and actuation effectiveness of shell transducer patches,
and studied the contributions of membrane and bending control effects. St-Amant and Cheng [7]
conducted simulations and experiments on active vibration control of a plate with integ-
rated piezoceramics and various control algorithms. Niezrecki and Cudney [8] created and
verified a simply supported cylinder with PZT actuator experimentally. Hwang and Park [9]
made a finite element formulation for vibration control of a laminated plate with piezo-
electric sensors/actuators. Reddy [10] arranged various formulations for laminated composite
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plates with integrated sensors/actuators under the simultaneous mechanical and electrical
loadings.
Space structures need to transfer orbits or move to desired positions, and the structures

may undergo dynamic instability such as flutter, divergence, and parametric resonance due
to a thrust. Higuchi and Dowell [11,12] studied the dynamic stability of a completely free
panel under a follower force. This is an example of space structures subjected to a rocket thrust.
Nayfeh and Mook [13] developed the method of multiple scales to analyze the parametrically
excited systems. Choo and Kim [14] analyzed the dynamic instability of rectangular plates
with four-free edges under a constant and pulsating follower force. They investigated the
instability regions for composite plates in detail. Kim and Kim [15] studied the parametric
instability of a laminated viscoelastic beam under a periodic loading, and summarized the
stabilizing effect of viscoelasticity of the material. Langthjem and Sugiyama [16] offered a survey
of simple structural elements subjected to a follower force. Svensson [17] investigated the stability
properties of a periodically loaded nonlinear dynamic system, and specially gave particular
attention to damping effects. Xin-Mai Yang and Ya-Peng Shen [18] analyzed the dynamic
instability region of a laminated cylindrical shells subjected to a parametric excitation. Lien-Wen
Chen et al. [19] evaluated the effect of feedback control gain on the dynamic stability of a
composite beam.
To control the dynamic behavior of system under the dynamic loading, it is desirable

to create damping without increasing the structural rigidity of the material. Thus, there
have been many research works on actively damped system with the exception of smart
structures under a follower force. In this paper, it is focused on the structures with piezo-
electric active-damping layer under a thrust. In other words, the mutual interaction of dynamic
stability of structures and piezoelectric active-damping layers for the vibration suppression is
investigated.
2. Formulation

Fig. 1 shows the schematic diagram of the piezo-laminated rectangular plate and feedback
control algorithm under a thrust.
2.1. Constitutive equations and piezoelectric coupling

Assuming linear piezoelectric coupling between the elastic field and the electric field in the kth
layer, the direct and the converse piezoelectric equations for the first-order shear deformation
theory(FSDT) are [10]
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Fig. 1. Piezo-laminated plate and feedback control algorithm under a thrust P.
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0 0 ē32
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where the upper-bar means the transformed quantity to the xyz coordinate.

2.2. Displacement field for FSDT

The displacement field is based on the FSDT, that is, the displacements u, v and w at a point (x,
y, z) are expressed as functions of mid-plane displacements u0, v0, w0 and independent rotations fx

and fy of the normals in the xz and yz planes, respectively.

uðx; y; z; tÞ ¼ u0ðx; y; tÞ þ zfxðx; y; tÞ;

vðx; y; z; tÞ ¼ v0ðx; y; tÞ þ zfyðx; y; tÞ;

wðx; y; z; tÞ ¼ w0ðx; y; tÞ: ð3Þ

In this study, each respective five degrees of freedom (u0, v0, w0, fx, fy) is interpolated over an
element as 16-node Lagrangian element.

2.3. Equations of motion

Equations of motion of the piezo-laminated plate can be derived by the extended Hamilton’s
principle

d
Z t2

t1

ðT � U þ W cÞ dt þ

Z t2

t1

dWnc dt ¼ 0; (4)
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where

T ¼
1

2
r
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qw
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d̄ðx � aÞdw dA; ð5Þ

where P(t) and a are the follower force and the length of the plate to the x direction, respectively.
Actuator layer with thickness hA is assumed to be applied with a voltage V e only in the

thickness direction, the electric field vector {E} can be expressed as [1]

fEg ¼ 0 0 1=hA

� �T
Ve ¼ ½Bv	V

e: (6)

The finite element method is applied, after which the matrix equation of motion can be obtained
as follows [1,14,15]:

½M	f €dg þ ½K 	fdg � PðtÞ½Kg	fdg ¼ ½Kav	V
e; (7)

where the displacement vector and [Kav] are defined as follows:

fdg ¼ ½u0 v0 w0 fx fy	
T; (8)

½Kav	 ¼

Z
V

½B	T½ē	T½Bv	 dV : (9)
2.4. Sensor equation and active control

Total charge developed on the sensor surface is the spatial summation of all the point charges
on the sensor layer. In this study, it is assumed that the whole piezoelectric lamina serves as the
effective surface electrode.
Then, the total charge q(t) can be written as follows:

qðtÞ ¼
XNs

j¼1

1

2

Z
Sjðz¼zkÞ

Dz dS þ

Z
Sjðz¼zkþ1Þ

Dz dS

" #
; (10)

where Ns denotes the number of elements, Sj is the surface of the jth element, and

Dz ¼ ē31�x þ ē32�y þ ē36gxy ¼ ½ē3	f�mg: (11)

Thus, the current i(t) on the surface of a sensor is expressed as

iðtÞ ¼
dqðtÞ

dt
: (12)
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Piezoelectric sensors are assumed to be used as strain rate sensors, then the current can be
converted into voltage output Vs as

VsðtÞ ¼ GciðtÞ ¼ Gc

dqðtÞ

dt
; (13)

where Gc is the gain of the current amplifier, which transforms the sensor current to voltage.
The distributed sensor generates a voltage when the structure is oscillating, and this signal is fed

back into the distributed actuator. Using a constant gain control algorithm as in Ref. [1], the
actuating voltage can be expressed as

Ve ¼ GiVs ¼ GiGc

dq

dt
; (14)

where Gi is the gain to provide feedback control.
Therefore, the actuating voltages V e can be written as [1]

Ve ¼ ½G	½K sv	f
_dg; (15)

where

G ¼ GiGc;

½Ksv	 ¼
XNs

j¼1

1

2

Z
Sjðz¼zkÞ

½ē3	½B	 dS þ

Z
Sjðz¼zkþ1Þ

½ē3	½B	 dS

" #
: (16)

Now, Eq. (7) can be rewritten as

½M	f €dg � ½Kav	½G	½K sv	f
_dg þ ð½K	 � PðtÞ½Kg	Þfdg ¼ f0g: (17)
3. Dynamic stability analysis

If a structure is subjected to a constant follower force, it may undergo divergence or flutter
instability. Furthermore, small damping sometimes destabilizes a flexible system, requiring the
need to check the dynamic stability characteristics of the structure using the eigenvalue analysis.
For a parametrically excited system, let

PðtÞ ¼ P0 þ P1 cos Odrt: (18)

Then, Eq. (17) becomes

½M	f €dg � ½Kav	½G	½K sv	f
_dg þ ð½K 	 � P0½Kg	Þfdg � P1 cos Odrt½Kg	fdg ¼ f0g: (19)

Introducing G* as standard magnitude of control gain, and Pcr as the critical value of the
constant follower force,

½M	f €dg � m½Kav	½G

	½Ksv	f

_dg þ ð½K	 � aPcr½Kg	Þfdg � bPcr cos Odrt½Kg	fdg ¼ f0g; (20)

where m, a and b means G/G*, P0/Pcr and P1/Pcr, respectively.
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By using modal transformation, we can transform [M] and [K] into diagonal matrices.
Generally, three translation and three rotation modes are observed for a plate structure. We
assume that such rigid-body modes can be controlled by proper method [14].
Let [F] and [C] be the n� (n�p) normalized right and left modal matrices, where p is the

number of rigid body modes that is assumed to be controlled. Introducing the linear
transformation {d}=[F]{Z} and pre-multiplying [C]T on each term, the equations of motion
can be obtained as [14]

½I 	f€Zg � m½C	f_Zg þ ½L	fZg � b cos Odrt½R	fZg ¼ 0; (21)

where ½C	T½M	½F	 ¼ ½I 	; ½C	T½K 	½F	 ¼ ½L	; ½C	T½Kg	½F	 ¼ ½R	:
In component form,

€Zj þ m
Xn

m¼1

Cjm _Zm þ o2j Zj þ 2� cos Odrt
Xn

m¼1

RjmZm ¼ 0; (22)

where

j ¼ 1; 2; 3; . . . ; n � p; � ¼ �b=2:

Using the method of multiple scales as in Ref. [13] by the first-order expansion of m and e,

ZjðT0;T1;T2Þ ¼ Zj0ðT0;T1;T2Þ þ mZj1ðT0;T1;T2Þ þ �Zj2ðT0;T1;T2Þ; (23)

where T0=t and T1=mt, T2=et are the so-called fast-scale and slow scales, respectively, and note
that e used in Eq. (23) does not mean the strain used in Section 2.3.
Substituting Eq. (23) into Eq. (22),

D20Zj0 þ o2j Zj0 ¼ 0; (24)

D20Zj1 þ o2j Zj1 ¼ �2D0D1Zj0 �
Xn

m¼1

CjmD0Zm0; (25)

D20Zj2 þ o2j Zj2 ¼ �2D0D2Zj0 � ½expðiOdrT0Þ þ expð�iOdrT0Þ	
Xn

m¼1

RjmZm0; (26)

where Dk ¼ q=qTk; j ¼ 1; 2; 3; . . . ; n � p:
General solution of Eq. (24) is,

Zj0 ¼ AjðT1;T2Þ expðiojT0Þ þ c:c: (27)

where c.c. represents the complex conjugate of the preceding terms.
Inserting Eq. (27) into Eqs. (25) and (26), equations with secular terms that are unbounded with

time can be derived. Complex functions Aj are determined by eliminating the terms from Eqs. (25)
and (26) which produce the troublesome secular and small-divisor terms in Zj1, Zj2. In this way,
two types of transition curves that separate stable solutions from unstable ones in the e–Odr plane
can be defined [15].
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For Odr=op+oq, the sum-type combination resonance as [14]

Odr ¼ op þ oq � �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RpqRqp

opoq

�
mCii

�

� �2s
: (28)

For Odr=oq�op, the difference-type combination resonance as [14]

Odr ¼ �op þ oq � �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

RpqRqp

opoq

�
mCii

�

� �2s
; (29)

where

i ¼ p; q:

From these equations, it can be easily seen that the sum- and difference-type combination
resonance cannot exist simultaneously for any pair of natural frequencies op and oq.
While the results such as ‘elastic stability boundaries’ of the system without damping have been

already obtained, the dynamic instability may occur only at the amplitude of the force greater
than a certain minimum value in the presence of damping. Furthermore, the critical value of
excitation parameter, ecr for instability can be obtained as,

�cr ¼ mCii

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
opoq

jRpqRqpj

r
;

where

i ¼ minðp; qÞ:

4. Numerical results and discussions

The top and bottom layers of the plate are assumed to be made up of piezoceramic (PZT
G1195N), whereas the middle layer is an isotropic material (Aluminum alloy 2024-T4). Table 1
shows the material properties of the model. To check the numerical results, we choose the
boundary conditions of the plate are free on all edges as in Ref. [14].
The results are presented for three aspect ratios(l) equal to 2, 1 and 0.5 with the thickness

ratio(g) equal to 0.01. Also, non-dimensional frequency and load parameters are introduced to
present numerical data in the figures:

O2 ¼
m̄o2a4

D
; Q ¼

Pa2

D
:

4.1. Constant load

4.1.1. Eigenvalue curves
Figs. 2(a)–(c) show the eigenvalue curves for the case without damping, that is to say, G=0. In

the figures, QF,1 and QF,2 denote the flutter loads for l=2,1 and 0.5, respectively.
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Table 1

Material properties of PZT G1195N and aluminum alloy 2024-T4

PZT 2024-T4

Young’s moduli (GPa) E11=E22=E33 63.0 73.0

Poisson’s ratio n12=n13=n23 0.3 0.3

Shear moduli (GPa) G12=G13=G23 24.2 28.1

Density (kgm�3) r 7600 2800

Piezoelectric constants (mV�1) d31=d32 2.54e–10

Electrical permittivity (Fm�1) X11=X22 1.53e–8

X33 1.53e–8
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Fig. 2. (a) Eigenvalue curves without damping (l=2), (b) eigenvalue curves without damping (l=1), (c) eigenvalue
curves without damping (l=0.5).
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For l=2, the magnitude of QF is about 107.3, and is almost equal to the data in Ref. [14]. For
l=0.5, there exists weak instability due to higher modes, and this type of flutter sometimes
determines the critical load of structure as in Refs. [11,12].
4.1.2. Effect of piezoelectric layers
Damping effect is considered in the piezoelectric layers. Then the frequency are changed to be

complex values for all levels of thrust Q. Furthermore, the two curves of the real part of
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frequencies do not merge, but asymptotically approach each other. In this case, the flutter should
be defined as the imaginary part of frequency changes from positive to negative.
Fig. 3 shows the eigenvalue curves for l=2 as the control gains equal to 0, 500 and 1000,

respectively. Eigenvalue curves without damping is an asymptotic curve for the curves with
damping both in real and imaginary parts. The ratio of the imaginary part to the real part of
frequency is called the true damping ratio, and the magnitude of that characterizes the intensity of
the flutter instability. Fig. 4 shows the intensity of instability for the same case as Fig. 3, and the
ordinate OI/OR is a measure of the intensity of flutter. The figure shows that the system is
dynamically unstable if OI/ORo0. On the contrary, the intensity for Ga0 is much weaker than
that for G=0.
Figs. 5(a)–(c) show the results that the lowest flutter loads for Ga0 appear at a lower load than

at that for G=0. Further, the flutter load for Ga0 drops drastically in contrast to the case for
G=0. But the magnitude of the critical load is insensitive to the change of the non-zero gain G.
However, in Fig. 5(c), the intensity of the weak flutter becomes weaker and disappears, or dies out
as damping is further increased. It is clear that the damping has a destabilizing effect on structures
subjected to the follower force, but stabilizes the weak flutter.
4.2. Load with a pulsating part

4.2.1. Parametric resonances

Without damping, stability transition curves in the e–Odr plane are presented for three aspect
ratios l equal to 2, 1 and 0.5, respectively (Figs. 6(a)–(c)).
As shown in the figures, the instability regions are very sensitive to the aspect ratios. For l=0.5,

only sum-type combination resonance appears, but for l=2, only difference-type exists. However,
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Fig. 5. (a) Flutter load shift (l=2), (b) flutter load shift (l=1), (c) flutter load shift (l=0.5).
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for the case of l=1, two types of instability region are observed simultaneously. This is a result of
the sign of the geometric stiffness matrices, Rij, Rji. Also the combination resonance of two types,
such as symmetrical or non-symmetrical modes, appears selectively. We can see that only two
symmetrical (bending) modes are combined with each other, or non-symmetrical (twisting) modes
are united each other. Furthermore, the dominant instability regions are observed around 2o1,
2o2 regardless of the aspect ratios.

4.2.2. Effect of active damping layer

Fig. 7 shows the change of instability regions when the plate is actively damped by piezoelectric
layers.
In this figure, the unstable regions decrease with the proportional to magnitude of G, and shift

to the right when the control gain G exists. In other words, the stable region is enlarged when the
plate is damped, and active-damping layer shows the stabilizing effect.
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Fig. 8. (a) Critical value of the excitation parameter (l=2), (b) critical value of the excitation parameter (l=1), (c)
critical value of the excitation parameter (l=0.5).
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To investigate the rate of decrease, we can define the critical value of excitation parameter, ecr
and see the relation between ecr and G. Figs. 8(a)–(c) suggest that critical value of excitation
parameter are almost linearly increased as the control gain is increased. In this figure, we see the
main instability region to be main concentrated around 2o1, 2o2.
5. Conclusions

In this study, the dynamic stability of plate with the piezo-laminated active-damping layer
under a thrust is investigated. As a result, even slight damping was found to bring about
considerable change to the dynamic characteristics, and these results can be summarized as
follows.
When the plate is subjected to a constant thrust, flutter instability may appear. And eigenvalue

curves for the case of G=0 are asymptotic curves of those for the case of Ga0 both in real and
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imaginary parts. Damping effect of piezoelectric layers drastically destabilizes the strong
flutter instability, that is, imaginary part of eigenvalue curve for Ga0 becomes negative at a
lower load than that for G=0. But, the flutter load in the system with damping is insensitive to the
change in the magnitude of damping effect. However, damping effect stabilizes the weak flutter
instability. The intensity of the weak flutter becomes weaker and it dies out as damping is further
increased.
Parametrically excited system may produce parametric resonance. The aspect ratio

affects the types and width of parametric resonance. And numerical results show that the
unstable region decreases in actively damped system. Also, the critical value of excitation
parameter that represents width of instability region is linearly proportional to the control
gain, G.
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